Discrete evolutionary birth-death processes and their large population limits

نویسندگان

  • Anatolii Puhalskii
  • Burton Simon
چکیده

We study a class of discrete-state Markovian models of evolutionary population dynamics for k types of organisms, called discrete evolutionary birth-death processes (EBDP). The organisms in a model environment interact with each other by playing a certain game. Birth rates for type i organisms at time t are determined by their expected payoff in the game against an opponent chosen randomly from the environment at time t. Death rates at time t for all the organism types are equal, and proportional to the total population at time t. A discrete EBDP is therefore a continuous-time Markov chain on the nonnegative k-dimensional integer lattice, with state transitions to neighboring vertices only. A certain system of k nonlinear ordinary differential equations (ODE) can be derived from the discrete EBDP, and used as a deterministic approximation. We prove that a properly scaled sequence of EBDP’s converges (in probability, uniformly on bounded sets) to the solution of the system of ODE’s. We also prove that a different scaling of the sequence converges (in distribution) to a certain system of stochastic differential equations (SDE). An example based on reactive strategies for iterated prisoner’s dilemma is used to illustrate population dynamics for discrete EBDP’s, as well as the dynamics for the ODE and SDE limits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The duality of spatial death–birth and birth–death processes and limitations of the isothermal theorem

Evolutionary models on graphs, as an extension of the Moran process, have two major implementations: birth-death (BD) models (or the invasion process) and death-birth (DB) models (or voter models). The isothermal theorem states that the fixation probability of mutants in a large group of graph structures (known as isothermal graphs, which include regular graphs) coincides with that for the mixe...

متن کامل

Individual-based probabilistic models of adaptive evolution and various scaling approximations

We are interested in modelling Darwinian evolution, resulting from the interplay of phenotypic variation and natural selection through ecological interactions. Our models are rooted in the microscopic, stochastic description of a population of discrete individuals characterized by one or several adaptive traits. The population is modelled as a stochastic point process whose generator captures t...

متن کامل

Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models.

A distinctive signature of living systems is Darwinian evolution, that is, a propensity to generate as well as self-select individual diversity. To capture this essential feature of life while describing the dynamics of populations, mathematical models must be rooted in the microscopic, stochastic description of discrete individuals characterized by one or several adaptive traits and interactin...

متن کامل

A dynamical model of two-level selection

Question: How do continuous-time evolutionary trajectories of two-level selection behave? Approach: Construct and solve a dynamical model of two-level selection capable of predicting evolutionary trajectories and equilibrium configurations. Mathematical methods: Evolutionary birth–death processes, simulation, large population asymptotics, numerical solutions of hyperbolic PDEs. Key assumptions:...

متن کامل

Biological applications of the theory of birth-and-death processes

In this review, we discuss applications of the theory of birth-and-death processes to problems in biology, primarily, those of evolutionary genomics. The mathematical principles of the theory of these processes are briefly described. Birth-and-death processes, with some straightforward additions such as innovation, are a simple, natural and formal framework for modeling a vast variety of biolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011